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Abstract
The high energy intensity and rigorous quality demand of injection molding have received significant interest under the back-
ground of the soaring production of global plastic industry. As multiple parts can be produced in a multi-cavity mold during 
one operation cycle, the weight differences of these parts have been demonstrated to reflect their quality performance. In this 
regard, this study incorporated this fact and developed a generative machine learning-based multi-objective optimization 
model. Such model can predict the qualification of parts produced under different processing variables and further optimize 
processing variables of injection molding for minimal energy consumption and weight difference amongst parts in one cycle. 
Statistical assessment via F1-score and R2 was performed to evaluate the performance of the algorithm. In addition, to vali-
date the effectiveness of our model, we conducted physical experiments to measure the energy profile and weight difference 
under varying parameter settings. Permutation-based mean square error reduction was adopted to specify the importance 
of parameters affecting energy consumption and quality of injection molded parts. Optimization results indicated that the 
processing parameters optimization could reduce ~ 8% energy consumption and ~ 2% weight difference compared with the 
average operation practices. Maximum speed and first-stage speed were identified as the dominating factors affecting quality 
performance and energy consumption, respectively. This study could contribute to the quality assurance of injection molded 
parts and facilitate energy efficient and sustainable plastic manufacturing.

Keywords Injection molding · Random forest · Multi-objective optimization · Energy consumption · Product quality · 
Sustainable manufacturing

Introduction

The world economic forum estimated that global market vol-
umes would keep growing substantially from annual produc-
tion of 380 million tons in 2015 and were estimated to be 
12,000 tons in 2050 (Geyer et al. 2017). Injection molding 
is one of the primary plastics processing techniques (Liu 
et al. 2020) and includes four main operation phases: fill-
ing stage, holding stage, cooling stage, and demolding stage 

(Yen et al. 2006). These subprocesses with high-temperature 
heating, forced cooling, and high pressure is energy inten-
sive and quality sensitive. The energy efficiency of injection 
molding is still particularly low that merely 50% to 60% of 
total energy contributes to the forming process (Lovrec et al. 
2017). Apart from the energy efficiency issue, the injec-
tion molding process is prone to generate defects, result-
ing in wasted material and higher costs. Common defects 
in injection molded products are bubbles, flying edges, and 
sinkholes (Mathivanan et al. 2010). Improving the energy 
performance and qualification rate simultaneously is non-
trivial. Currently, there are two typical promising approaches 
to solve such issue in practice (Arisoy et al. 2015). The first 
method mainly focuses on improving and upgrading the 
injection molding machine physically, for example, using a 
variable-volume pump, two-plate clamping device, and elec-
tro-hydraulic hybrid drive system for energy conservation 
and quality assurance (Arisoy et al. 2015). Another method 
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is to optimize the processing parameters of injection mold-
ing that range from polymeric heating to parts demolding (Li 
et al. 2015; Liu et al. 2020). Obviously, the first approach 
can save energy and improve product quality directly. How-
ever, the wide application of equipment upgrading is cost-
prohibitive for the majority of small enterprises. In contrast, 
optimizing process parameter settings is a relatively more 
practical and feasible way towards quality assurance and 
energy conservation (Madan et al. 2013; Kashyap and Datta 
2015; Selvaraj et al. 2022).

There has been a body of studies that analyzed various 
controllable parameters to obtain the important influenc-
ing parameters and optimized process parameters to reduce 
energy consumption (Peng et al. 2019; Wang et al. 2021; 
Zhou et al. 2022). Mianehrow et al. (2017) assessed the 
impact of different machine-related and process-related 
parameters on energy consumption and provided insights 
into how to reduce the maximum electrical demand. Meek-
ers et al. (2018) achieved reduce energy consumption by the 
impact of parameters such as cooling time on the injection 
process. Quantitative models were commonly established 
to capture the relationship between energy consumption 
and process parameters. Li et al. (2015) proposed a specific 
energy consumption (SEC) model to predict the energy con-
sumption of an injection molding equipment by injection 
process parameters. The result shows that the throughput 
rate is the key factor. Dietmair and Verl (2008) introduced 
a new form of modeling to predict energy efficiency for 
studying the energy efficiency of machine tools. Consider-
ing the thermodynamic analysis, Chien and Dornfeld (2013) 
presented a semi-empirical model for predicting the energy 
consumption of an injection molding equipment based on 
the energy distribution in the injection molding process.

With the increasing production of plastic parts, striving 
for product quality is of increasing concern (Fernandes 
et al. 2018b). A series of studies have focused on iden-
tifying the relationship between process parameters and 
product quality to optimize the quality by the design of 
experiments (DOE) (Fernandes et al. 2018a). Among DOE 
techniques, the Taguchi method is a widely used technique 
to find the entire factor space based on a small number of 
experiments. Tang (2007) improved product quality effi-
ciently by applying the Taguchi method. In addition, a set 
of numerical simulation approaches, e.g., the computer-
aided engineering (CAE) technique has been applied to 
the injection molding process for quality improvement 
(Farshi et  al. 2011). Additionally, due to the machine 
learning (ML) algorithms can construct analytic mappings 
from input features to output responses (Chen et al. 2008; 
Wang et al. 2022), some studies applied ML as a surrogate 
method to rapidly figure out the optimal parameters, such 
as artificial neural networks (ANN), support vector regres-
sion (SVR), and K means. Shen et al. (2007) proposed an 

ANN combined with an intelligent heuristic algorithm to 
optimize the process parameters of an injection molding 
machine. In this method, the CAE simulation data was 
used as the dataset to train the model between injection 
process parameters and volume shrinkage of parts. Luo 
et al. (2020) combined SVR method and particle swarm 
optimization algorithm to obtain optimal parameters of the 
machine. Ding et al. (2011) introduced a new algorithm K 
means of joint support vector clustering-strength Pareto 
evolutionary algorithm (KSVC)-SPEA to achieve multi-
objective optimization.

DOE in conjunction with response surface method (RSM) 
is usually used in the injection molding process (Chen 
et al. 2012, 2016). But it cannot predict accurately when 
a wide range of parameters are involved (Tian et al. 2017). 
Additionally, most of the prior studies made a prediction 
of energy consumption or quality via CAE simulations or 
trained ML model based on a simulated dataset. Although 
CAE simulations can predict general correlations between 
trends and parameters, the simulation results do not neces-
sarily reflect the real situation. The simulation errors cannot 
be ignored and may arguably result in inaccurate predictions 
(Hopmann et al. 2019). Most of the existing work only pre-
dicts and optimizes one single or two objectives, e.g., the 
energy consumption and average quality. Interestingly, in our 
physical experiments of injection molding, we found that the 
weight difference between parts in different cavities of mold 
is closely related to the qualification rate of products. This 
phenomenon recently has gained increasing attention in the 
domain of mold design (Gim et al. 2015; Tsai et al. 2022). 
To the best of our knowledge, few studies have ever incor-
porated this indicator into multiple objectives optimization 
of the manufacturing process.

To fill the above research gaps, this study proposed a 
data-driven model combining ML and genetic algorithms 
(GA) to achieve multiple objectives optimization includ-
ing the energy consumption of the injection molding pro-
cess, quality of the injection product, and weight difference 
between parts produced by multi-cavity mold. We conducted 
an injection molding experiment and collected 200 groups 
of actual operation data to train the ML model. Then, we 
analyzed the performance of the proposed model. Results 
showed that our model would improve the qualification rate 
of injection products and reduce the average energy use in 
one operation cycle. The present study would provide scien-
tific basis for improving energy efficiency and qualification 
rate in injection molding practice.

The structure of this study is organized as follows: Part 
2 presents the index of the dataset and procedure of dataset 
construction. Part 3 describes the basic methodology of the 
algorithm and the process of constructing the model pro-
posed in this study. Part 4 provides a discussion of the criti-
cal results. Finally, Part 5 concludes this study.
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Dataset construction

Injection molding system description

An injection molding process can be divided into four 
main stages: filling stage, holding stage, cooling stage, and 
demolding stage (Yen et al. 2006). Operation parameters 
influencing the injection molding process can be divided 
into the following categories:

• Temperature: temperature of the barrel and the tempera-
ture of the mold.

• Speed: injection speed.
• Time: injection holding time, cooling time, and cycle 

time.
• Pressure: holding pressure, maximum pressure.
• Stroke position: cushion position, V-P switch-over posi-

tion.

Considering the influence of the process parameters on 
the quality of the injection product (Hassan 2013; Huang 
et al. 2021a, b), this study mainly selected the follow-
ing seven parameters: cushion position, V-P switch-over 
position, cycle time, first-stage speed, second-stage speed, 

holding pressure, maximum pressure, and maximum 
speed.

The type of injection molding machine used in this study 
is Toyo Si-180IV, the injection molding product is the han-
dle inner buckle of the car seat, and the number of cavities 
in the mold is 2, as shown in Fig. 1.

Data collection

In this study, the weight of the injection parts was used as 
an indicator to determine the qualification of the injection 
molded product. This indicator was considered to be uni-
versal because it is independent of the type of mold and 
material (Li et al. 2015). The weight difference between 
the injection molded part and standard part can reflect the 
existence of quality problems such as volume shrinkage, fly-
ing edges, and internal porosity. These defects are usually 
unacceptable but can be diminished by selecting appropri-
ate process parameters. This study used the injection mold-
ing of inner buckle (a component in car seat) as an illus-
trative example. Here, the weight range for standard parts 
is 37.65g ≤ m ≤ 38.20g. Whether the weight of injection 
molded part located in this range was applied as a criterion 
to determine its qualification.

Fig. 1  a Injection molding 
machine. b The handle inner 
buckle of the car seat. c Multi-
cavity injection mold
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During the data acquisition process, the machine was set 
to automatic mode to obtain the corresponding 200 pairs 
of injection molded parts. After each random modification 
of the process parameters, the machine will automatically 
complete an injection. Notably, each pair of injection parts 
produced in one mold with two cavities was labeled as No. 1 
and No. 2. We measured the weight of each injection molded 
part pair three times and adopted the average value. The 
weight of plastic injection parts was measured using an elec-
tronic balance (BSM-220.4).

This study used a power quality analyzer (VICTOR 
5000) for energy consumption measurements in three-
phase four-wire systems. Figure 2 shows the energy power 
curve of the injection molding machine within one cycle. 
Each cycle ended with the mold open and began with the 
mold closure, these two operations consumed energy. Fur-
thermore, the closing operation includes the injection of 
the polymer, causing fluctuations in energy power. For the 
plasticize zone and heater zone, the machine required a 
large amount of energy to transport the polymer and heat 
material. Therefore, the energy power varied considerably 
among the different zones. The energy-time curve in each 
cycle is integrated to obtain the energy consumption cor-
responding to each set of process parameters. We recorded 
and computed the energy consumption of the 200 cycles, 
i.e., 400 injection molded parts.

Method

Random forest

Ensemble learning usually has better performance in 
completing learning tasks compared with a single learner 

(Dong et al. 2020). The common ensemble learning meth-
ods are boosting, bagging, and random forest (RF) (Gomes 
et al. 2017; Sagi and Rokach 2018; Dong et al. 2020). 
Bagging is a representative method of parallel ensem-
ble learning based on bootstrap sampling. And RF is an 
enhanced version of bagging (Breiman 2001). RF intro-
duces the selection of random attributes in the training 
process and is constructed based on decision tree. A major 
advantage of random forest is simplicity, high accuracy, 
and low computational overhead. These merits enable its 
wide range of applications (Akar and Güngör 2012). To 
initialize the RF algorithm, we defined two parameters 
that: number of decision trees N and number of attrib-
utes k to divide the RF. Inappropriate selection of these 
two parameters will lead to over-fitting or underfitting. To 
obtain the expected result, previous study (Geurts et al. 
2006) recommended to set k =  log2d or k =

√
d , where d 

is the number of attributes in the initial dataset. RF has 
classical two types: classification RF based on classifica-
tion decision tree and regression RF based on regression 
decision tree. For each node, common division criteria 
include Gini index, information gain, etc. The Gini index 
can be calculated as follows:

where Ci is a randomly selected class, T is a given training 
set, and f (Ci,T)

|T|  is the event probability that belongs to the Ci 
class (Pal 2005).

In addition, Breiman (2001) also proposed a method 
to calculate the importance of variables in the RF model. 
For each decision tree in the RF, random noise is added to 
one of the variables for the out-of-bag (OOB) data, such as 
randomly permuting the mth variable in the OOB data. A 
variable is proved to be important if the accuracy decreases 
greatly after adding random noise. The permutation-based 
MSE reduction has been adopted as a common approach by 
many researchers to evaluate the importance of variables. 
The corresponding equation is defined as follows (Grömp-
ing 2009):

where the ŷi,t is predictions, OOBt = {i: observation i is 
OOB for tree t}, nOOB,t is the number of OOB observations 
in tree t. For each variable xi in each tree t, we calculated the 
MSE reduction after the permutation. The MSE reduction 
according to variable xi for the complete forest was obtained 
as the average of all trees’ MSE conduction. For compari-
son purposes, all variable importance metrics of the for-
est were normalized to sum to 100%. We incorporated this 

∑∑
j≠i
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Ci, T

)

|T|

)(
f
(
Cj, T

)

|T|

)

OOBMSEt =
1

nOOB,t

n∑

i=1;i∈OOBt

(
yi − ŷi,t
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Fig. 2  Energy power-time curve in a cycle
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characteristic of RF into the importance of process variables 
to energy consumption, part quality, and weight difference.

Genetic algorithm

Genetic algorithm is one of the population-based random 
algorithms inspired by evolutionary biology (Mirjalili 
2019). It has become one of the most popular evolutionary 
algorithms for optimization due to its scalability, simplic-
ity, and global optimum solutions (Kumar et al. 2020). 
Figure 3 presents the procedure of a typical GA algorithm. 
Firstly, this algorithm initializes the parameters such as 
number of populations, number of iterations, variation 
rate, and crossover rate. Those parameters affect the speed 
of convergence and the accuracy of the results (Lobo and 
Lima 2005). Then, fitness is calculated to selected chro-
mosomes, and the selected ones were crossed, mutated, 
and replicated. The evolution terminated until reached the 
maximum of generations, or little improvement of fitness 
occurs in further epoch.

Generative machine learning algorithm 
for parameter optimization

Combining the advantages of RF and GA, this study proposed 
a generative machine algorithm for the multi-objective optimi-
zation, as shown in Fig. 4. Three RF models, namely, the qual-
ity prediction model, energy consumption prediction model, 
and weight difference prediction model were trained based on 
the dataset established in this study. The GA algorithm was 
used to continuously generate a population of chromosomes, 
i.e., a set of process parameters for the injection molding 
machine. The quality prediction model could determine the 
qualification of the part produced under the generated process 
parameters. Therefore, the model can be regarded as a first fit-
ness function. The parameter set corresponding to the unquali-
fied part was directly eliminated and regenerated through GA, 
while the parameter set with qualified part move towards the 
next stage. Additionally, energy consumption model can pre-
dict the energy consumption in a cycle through the process 
parameters. The weight difference model enabled to predict 
the weight difference of products generated by multi-cavity 

Fig. 3  The flowchart of GA
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mold. The normalized values of energy consumption predic-
tion and weight difference prediction were denoted as f1 and f2, 
respectively. F was the second fitness function in the algorithm 
proposed in this study and calculated as follows:

where w1, w2 were the weights corresponding to f1 and f2, 
depending on the actual requirements of the engineering 
application, and w1 + w2 = 1. The convergence of the algo-
rithm should be concerned when reaching the maximum iter-
ation number. The number of iterations should be increased 
if the algorithm was not convergent. Otherwise, the process 
parameter with minimal F-value was finally selected.

Statistical assessment

To assess the quality of fit in multiple regression, we com-
puted the most commonly used indicator R2 (Renaud and 
Victoria-Feser 2010) as follows:

F = w1f1 + w2f2

R2 = 1 −

n∑
i=1

�
yi − ŷi

�2

n∑
i=1

�
yi − yi

�2

where yi is the actual value, yi is the mean of the actual val-
ues, and ŷi is the predicted value. R2 closer to 1 signified a 
better prediction model. Generally, the performance of the 
model can be considered as good if R2 > 0.8 (Roy and Roy 
2008).

For classification models, the F1 score was selected as a 
measurement of classifier performance (Chicco and Jurman 
2020). The equation for the calculation of the F1 score was 
as follows:

where P is the accuracy of the model, R is the recall of the 
model, and F1 score closer to 1 implied better performance 
of the classifier.

Result and discussion

Dataset analysis

Table 1 presents the basic statistical information for the 
dataset, including the maximum, minimum, mean, and 
standard deviation values of each variable.

F1 =
2 × P × R

P + R

Fig. 4  The flowchart of the 
proposed model in this study
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The frequency histogram of the energy consumption 
dataset was shown in Fig. 5. It is worth noting that the 
energy consumption of over 80% is concentrated between 
250,000 and 290,000 J. Besides, the mean value and stand-
ard deviation are approximately 268,940 J and 19,534 J, 
respectively.

The frequency histogram of the weight difference data-
set was shown in Fig. 6. Over 65% of the weight difference 
range from 0.37 to 0.41 g, with a standard deviation of 
approximately 0.02 g.

Figure 7 displays a line graph of the quality dataset. The 
green region represented qualified areas, and the upper and 
lower boundary of this region indicated the tolerance of 
injection molded part. The red and blue curves represented 
the weight variation of parts in the No. 1 and No. 2 mold 
cavity, respectively. Notably, the trends of both curves are 
roughly similar. Further, the weight of the No. 1 product 
was basically lower than that of No. 2 product. According 
to this figure, 96 samples (192 parts in total) are located 
within the qualified region.

Performance of model

Based on the measured dataset, an RF model was con-
structed for prediction and using F1 scores and R2 metrics 
to measure the performance of the model. Figure 8 shows 
the results of quality prediction using RF. From the con-
fusion matrix diagram, it is clear that the classification 
results on training set are perfectly correct. And there are 
only two misclassified samples on the test set. This indi-
cated the accuracy of the quality prediction model. We 
also conducted ten cross-tests, and the average F1 score 
on the test set was 0.96. The above analysis validated the 
good performance of our RF model in classifying the qual-
ity of injection molded parts.

Figures 9 and 10 show the prediction results of weight 
difference and energy consumption, respectively. The line 
with a slope of 1 in the graph was called the ideal predic-
tion line. Sample points falling on the ideal prediction line 
indicate perfect prediction that the prediction value equals 
the true value. As shown in Fig. 9, the sample points fell 
roughly around the ideal prediction line, indicating that the 
weight difference prediction was close to the true value. 
The R2 value of the weight difference prediction model on 
the training set and test set were 0.92 and 0.89, respec-
tively. As the R2 values are greater than 0.8, the RF model 
can be supposed to have good prediction performance of 
weight differences. As for the energy prediction model, the 
points in Fig. 10 were evenly distributed around the ideal 
prediction line with no significant fluctuations. The R2 val-
ues for the energy prediction model on the training and test 
sets were 0.99 and 0.92, respectively. The result suggested Ta
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that the model has good behavior for weight difference 
prediction and can accurately predict energy consumption 
generated during the injection molding process.

To further validate the predictive performance of 
the trained model on the test set, we compare the pre-
dicted values of weight difference and energy consump-
tion with the true values, respectively. Figures 11 and 
12 show residuals of the predicted values represented by 
histograms. The figure showed that the predicted values 

were in line with the true values. For the weight differ-
ence prediction model, most residuals were distributed 
between −0.02 and 0.02 g. The maximum and minimum 
residuals were 0.026 g and −0.022 g, respectively. For 
the energy consumption prediction model, due to the 
large value of the energy consumption, the average was 
268,340 J. Thus, we focused on the relative error values, 
with maximum and minimum relative errors are 1.31% 
and −1.75%, respectively. In conclusion, the trained 

Fig. 5  The range of energy 
consumption dataset

Fig. 6  The range of weight 
dataset

Fig. 7  Weights of each pair of 
injection molded products pro-
duced by the bi-cavity mold
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model produced high-level performance in predicting the 
unknown sample.

Moreover, we obtained the optimal parameters by com-
bining those ML models with GA, as shown in Table 2. 
Parts fabricated under this group of parameters were quali-
fied. Clearly, the energy consumption decreased about 8% 
compared with the average of the original dataset. And the 

weight difference was 2% smaller than the mean value of 
the original data.

Importance analysis of input variables

To better understand the impact of each variable on the 
prediction results, we calculated the variable importance 

Fig. 8  a Confusion matrix 
heat map of the training set. b 
Confusion matrix heat map of 
the test set

Fig. 9  a The performance of 
weight difference prediction 
model on training set. b The 
performance of weight differ-
ence prediction model on test 
set

Fig. 10  a The performance of 
the energy consumption predic-
tion model on the training set. b 
The performance of the energy 
consumption prediction model 
on the test set
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of all the input variables. Figures 13, 14, and 15 pre-
sent the variable importance of all variables for qual-
ity prediction, weight difference prediction, and energy 

consumption prediction, respectively. The variables x1 to 
x8 denoted the cushion position, V-P switch-over posi-
tion, cycle time, first-stage speed, second-stage speed, 

Fig. 11  a Comparison between 
true value and predicted value 
of weight difference. b The 
residual value between the real 
value and the predicted value of 
weight difference

Fig. 12  a Comparison between 
real and predicted energy 
consumption. b The residual 
value between the real value and 
the predicted value of energy 
consumption
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holding pressure, maximum pressure, and maximum 
speed.

For the quality prediction model, the variable importance 
of maximum speed (x8), maximum pressure (x7), and first-
stage speed (x4) were the top three highest with the value of 
0.16749, 0.13908, and 0.13588, respectively. The variable 
importance implied that the maximum speed, the maximum 
pressure, and first-stage speed can exert a significant impact 
on the quality. It is well known that the pressure and the 
speed were the key factors affecting the weight of injection 
molded products (Hassan 2013). And the weight of parts is 
an important metric for testing the qualification in this study; 
For the weight difference prediction model, the second-stage 
speed (x5) had the highest variable importance of 0.19204. 
Aforementioned, speed is an important factor influencing 
the weight of parts. Therefore, it can also have an impact on 
weight difference. Furthermore, the variable importance of 
cushion position (x1) was 0.15336. The cushion position is 
the position of the screw corresponding to the completion 
of the filling stage, having a close relationship with the fill-
ing process of injection molding. And the filling process 
has an essential influence on the weight difference of parts 
produced by different cavities; hence, the cushion position is 
crucial for the weight difference prediction. For the energy 
consumption prediction model, the variable importance 
was significantly discrete among the input variables, and 
the variable importance of the first-stage speed (x4) reached 
0.89854, indicating that the first-stage speed has a greater 
impact on the energy consumption of the injection mold-
ing machine. The first-stage speed refers to the speed at 
which the screw reaches the first specified position. Before 
the screw reaches the first specified position, the polymer 
inside the transfer unit is stationary. Therefore, the screw 
is subjected to greater resistance during this phase than 

Table 2  The table shows the results of optimization

ID Variable Value Unit

x1 Cushion position 14.93 mm
x2 V-P switchover point 22.53 mm
x3 Cycle time 50.66 s
x4 First-stage speed 13 mm/s
x5 Second-stage speed 7 mm/s
x6 Holding pressure 132.25 MPa
x7 Maximum pressure 121.27 MPa
x8 Maximum speed 25 mm/s
Constant Weight difference 0.38 g
Constant Energy consumption 246914 J

Fig. 13  Variable importance of the input variables of the quality pre-
diction model

Fig. 14  Variable importance of the input variables of the weight dif-
ference prediction model

Fig. 15  Variable importance of the input variables of the energy con-
sumption prediction model
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during other phases. As the first speed increases, the more 
resistance the screw is subjected to and the more energy the 
machine needs to consume.

Conclusion

In this study, the process parameters of the injection molding 
machine were optimized using an active machine learning-
based optimization approach. The proposed method can 
achieve multi-objective optimization including the qualifi-
cation rate of parts, the energy consumption of the injection 
machine, and the weight of parts produced by multi-cavity 
mold. We calculated the R2 value and F1 score as the metrics 
to evaluate the performance of the trained ML model. For 
the quality prediction model, the F1 score on test set was 
0.96, indicating that the model can predict the quality of 
parts accurately. Furthermore, on the test set, the R2 value 
of the energy consumption prediction model and weight dif-
ference prediction model are 0.89 and 0.92, respectively. It 
is suggested that the trained ML models were robust and 
efficient in prediction. In addition, results showed that the 
optimal parameters can reduce ~ 8% energy consumption 
and 2% weight difference compared with the average of orig-
inal data. Moreover, we conducted analysis on the influence 
of input variables. We found that the maximum speed, the 
maximum pressure, and the first-stage speed have a signifi-
cant impact on the quality. As for energy consumption, the 
impact of the first-stage speed was the dominating. For the 
weight difference, cushion position and second-stage speed 
were two key factors.

One limitation of this study was that the relationship 
between processing variables and energy consumption as 
well as the weight difference was merely obtained from the 
data-driven prospective. The present work failed to reveal 
the overall underlying mechanism of variables affecting 
the energy and quality in one cycle. Follow-up studies can 
use generative machine learning-based method to opti-
mize other essential properties for injection molding such 
as deformation, size of product, and process emissions. 
Additionally, future study also can carry on analyzing the 
injection molding process based on the data in this study 
and establish a model to monitor the process of injection 
molding in real time. Alternatively, future studies can build 
a management system based on the proposed method to 
implement real-time data collection and optimization of the 
injection molding process.
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