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A B S T R A C T

Additive manufacturing (AM) has been a vital element of smart manufacturing. The high energy intensity or
environmental sustainability issue of AM, however, has posed a great challenge to the future massive application,
particularly laser-based direct energy deposition (L-DED). This study aims to determine the optimal processing
parameters for energy-saving without compromising the geometrical appearance. A quantification model for
energy efficiency at the process level was established, with two energy efficiency indicators of AM process. Then,
a meta-heuristic Mayfly algorithm, augmented with Bayesian technique and mutation strategies, was proposed to
improve hyperparameters in a typical machine learning model (XGBoost). Based on the full factorial L-DED
experiments, this study compared the improved XGBoost with four types of XGBoost derivatives via four algo-
rithm evaluation metrics. Non-dominated sorting genetic algorithm II was adopted to optimize the processing
parameters subject to the constraints of geometrical appearance. Results indicated that the proposed algorithm
outperformed other XGBoost derivatives in terms of prediction accuracy and convergence rate. The energy ef-
ficiency could be improved by 76.35 J/g or 6.78 % on average while ensuring the geometry of the deposited
layers. This study could help enhance energy-efficient additive manufacturing via proper processing parameters
selection and facilitate the sustainability in AM domain.

1. Introduction

Smart manufacturing or industrial 4.0 relies heavily on additive
manufacturing (AM) to decentralize production and manufacturing
processes, enable mass customization, and strengthen supply networks
[1]. AM builds, grows, or increases the mass of objects layer-upon-layer
until they match the 3D digital model. These techniques were consid-
ered a “disruptive manufacturing technology” with a promising land-
scape to transform the manufacturing industry completely [2].
However, low energy efficiency and qualification issues have been
regarded as the two significant barriers to broad and massive adoption
of AM [3].

Although AM is featured with a lower by-to-fly-ratio, the electrical
energy intensity of metal AM process is approximately 1–2 orders of
magnitude higher compared with traditional subtractive manufacturing,

according to the statistical analysis of various AM technologies from
process rate and power requirement perspectives [4]. Most energy
performance studies of AM process were performed on machine level, i.
e., evaluating the total energy consumption of subsystems including
laser beam generator, controller, and cooling system under different
operation modes. For example, comparative case studies [5,6] estimated
the specific energy consumption (SEC) of additive and subtractive
manufacturing by electricity consumption and deposition volume. Their
studies indicated that the energy intensity of metal AM (1.53 × 108

J/kg) is particularly higher when fabricating less structurally compli-
cated parts. The process level, however, is comparatively less studied
and emphasizes more on the energy flow distribution. Previous studies
have investigated the energy distributions on CO2 laser cladding [7], Nd:
YAG LENS process [8], and metal laser direct deposition [9]. According
to these works, the energy ratio of melting metal materials ranged from
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10 % to 26 %, and the remainder of the energy was mainly reflected off
by the molten pool and transferred away via heat. The low proportion of
effective energy utilization implied the high potential improvement of
energy intensity in the metal AM process.

Quality assurance is yet another challenge facing metal AM. Laser
energy melts the metal powder on the prior deposited layer along with
scanning direction, resulting in complex thermal cycles including
heating, melting, cooling, and solidification processes. The re-heating
and re-cooling processes generated highly non-uniform temperature
fields, high-temperature gradients, and fast cooling rates. Mechanical
anisotropy, residual stress, and molten-pool geometry are closely related
to the energy inputs and thermal dissipation [10]. For example, the
energy density (combining heat source power, scanning speed, powder
feed rate, hatch spacing, etc.) largely determines the thermal history
during processing. Insufficient energy density could increase the
porosity and discontinuity in cladding layers [11], while higher energy
density tends to obtain favorable metallurgy, microstructure, and me-
chanical properties [12]. Therefore, the energy efficiency and process
quality of metal AM is two primary concerns.

The improvement of energy efficiency and quality performance in
AM was popularly conducted from the perspective of processing pa-
rameters. There has been a body of studies optimizing the processing
parameters towards the energy and quality in the metal AM process
using heuristic algorithms, meta-heuristics algorithms, machine
learning techniques, or statistical approaches. For example, Wu et al.
developed an improved gene expression programming and non-
dominated sorting genetic algorithm (NSGA-II) to optimize the total
energy consumption of fiber laser welding [13]. Similarly, Osman et al.

analyzed the cost flows through the subcomponents of the plant and
employed the NSGA-II to optimize the energy and exergy efficiencies
[14]. Although prediction accuracy is a primary concern for mapping
systematic input to output, most of the aforementioned studies merely
obtain feasible results under limited data sets or even perform the
optimization statistically and qualitatively. L-DED encompasses various
factors that influence not only the energy efficiency of the production
process but also the quality of the end product. Pedro et al. developed a
machine learning model based on key process parameters affecting en-
ergy consumption in the plant, refining the fiberglass process for
reduced energy usage [15]. Chung-Feng et al. optimized the crafted
products by identifying the parameters with significant effects on
quality characteristics [16]. The majority of studies tend to optimize
solely based on either quality or energy usage, failing to sufficiently
account for the interconnectedness between energy efficiency and the
quality of the output. The optimization process primarily targets either
quality or energy efficiency as singular objectives. However, the inter-
connected relationship between energy and quality factors is not suffi-
ciently addressed. Laser energy, scanning speed, and powder feed rate
are key parameters, to a large extent, determining the energy efficiency
and mechanical properties of AM. Jinoop et al. focused on investigating
the effects of process parameters on geometry and quality and fabricated
defect-free L-DED products by optimizing process parameters [17]. How
these processing parameters affect the energy absorption-dissipation
process associated with powder, molten pool, and substrate still needs
in-depth investigation for enhancing energy saving and quality
performance.

Collectively, the pragmatic issues in typical metal AM process

Fig. 1. Overview of prediction and optimization for L-DED.
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regarding energy modeling and prediction rest on the following three
aspects: (1) Randomly choosing a metamodel or statistical algorithm to
conduct prediction can hardly get satisfactory accuracy, and the meta-
models optimizing AM process remains to be improved for higher pre-
diction accuracy; (2) Single objective optimization of AM process
towards either energy or quality via processing parameters is presum-
ably unfeasible in manufacturing practices; and (3) Influences of critical
processing parameters on the coupling fabrication quality and energy
consumption are still unclear.

To overcome the research gaps, the present study proposed a multi-
objective prediction and optimization framework (Fig. 1) to systemati-
cally improve the overall performance and preliminarily explore the
synergy mechanism of process energy and quality properties of parts. Of
the typical forms of metal AM techniques, laser-based direct energy
deposition (L-DED) is widely applied to the aircraft industry, nuclear
power plants, and shipbuilding [18]. As shown in Fig. 1, in the L-DED
experiment with Ti–10Mo titanium alloy powder, the SEC and energy
utilization ratio (EUR) were selected as energy efficiency indicators at
the process level and the geometrical appearance of deposited layers was
adopted as quality performance criteria. With the data obtained from a
full factorial experiment, the incorporation of Bayesian technique and
mutation strategy-based meta-heuristics into the framework of extreme
gradient boosting (XGBoost) was pursued for improving the hyper-
parameters of XGBoost. To validate the superior performance of the
proposed algorithm, a comparative analysis was conducted against four
XGBoost derivatives, employing four distinct algorithm evaluation
metrics. Feature importance was analyzed to reveal the relative impor-
tance of each feature on the target variables. With the prediction models
of energy efficiency and geometrical appearance, the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) was adopted to trade-off the
energy efficiency indicators subject to the constraints of geometrical
appearance requirements. The present study could help decrease the
energy cost of AM manufacturers and facilitate environmental sustain-
ability in the AM industry.

The rest of this article is organized as follows: Part 2 elaborated on
the process energy characterization and efficiency indicators of L-DED.
Part 3 described the detailed experimental setup and geometrical per-
formance metrics. Part 4 presented algorithms for prediction and opti-
mization, followed by the computational results in Part 5. Part 6
discussed sustainable and technical implications of energy efficiency
optimization in the AM process. Part 7 concluded this study.

2. Process energy characterization and efficiency indicators

2.1. Process energy characterization

The total laser energy can be separated into two types, i.e., energy
interacted with powder stream and transmitted energy [3], as shown in
Fig. 2. The former included the energy absorbed by spatters, energy
reflected by particles, and energy for heating powder. The latter

included the energy absorbed and reflected by the molten pool. Further,
the energy absorbed by molten pool partially provided the enthalpy
change required for melting and super-heating of molten pool, more
specifically, the useful energy of AM process. Another part was dissi-
pated via radiation, heat conduction, and convection. It should be noted
that process parameters could influence the dynamic behaviors of en-
ergy absorption and dissipation.

According to the above descriptions, the process energy E regarding
the deposited layer generation is comprised of the useful energy Ec and
energy loss El as shown in Eq. (1).

E= Ec + El (1)

The useful energy Ec is equivalent to the heat absorbed by the metal
powder from ambient temperature to melting temperature. Eq. (2)
expressed the Ec based on the enthalpy change of the molten metal
material.

Ec = ρ ⋅ S ⋅ vs ⋅ t⋅

⎛

⎝
∫Tm

Ta

C(T)dT+ΔH

⎞

⎠ (2)

where ρ is the density of substrate and powder materials in g/mm3; S is
the cross-sectional area of the deposited layer in mm2; vs is the scanning
speed in mm/min; t is the processing time in s; Ta is the ambient tem-
perature in K; Tm is the average temperature of the molten pool in K; C
(T) is the specific heat capacity of metallic materials in J/(g⋅K); and ΔH
is the latent heat of fusion of metal materials in J/kg.

The energy loss El included energy reflected by the surface of molten
pool (EA), energy reflected by the powder particles as they approach the
molten pool (EB), energy lost by radiation (ED), energy lost by convec-
tion (EE), energy lost by conduction (EF), and energy absorbed by the
powder particles spattered outside the molten pool (EG), as presented in
Eq. (3):

El =EA + EB + ED + EE + EF + EG (3)

According to the experimental results by Ref. [7], the radiated en-
ergy ED can be estimated by:

ED = σT4At (4)

where σ denoted the Stefan-Boltzman constant; T denoted the surface
temperature of the melt in K; A denoted the area of the melt surface in
mm2. Other terms in Eq. (3) can be estimated by thermodynamics and
heat transfer principles or statistical analysis. Statistical data indicated
that the ED, EB, EA, EF, EG, and EE account for 1 %, 9 %, 50.1 %, 30 %, 0.8
%, and 0.1 % of total process energy, respectively.

2.2. Process energy efficiency indicator

In the L-DED process, high energy laser beam melts not only metal

Fig. 2. Schematic of energy distribution in L-DED on process level.
Fig. 3. A typical cross-section of the deposited layer under a microscope.
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powder but also substrate or previously deposited layer to some extent
and forms the remelting area, as shown in Fig. 3. The remelting area
ensures that the newly deposited material is properly fused to the pre-
viously deposited material, creating a strong bond between the adjacent
layers. The proportion of remelting area can be expressed by a dimen-
sionless factor as presented below:

ηre =
Sre

Sre + Sd
⋅100% (5)

where ηre is the ratio of remelting area, Sd and Sre are the deposited area
and remelted area in mm2. The S in Eq. (2) equals the sum of Sd and Sre.
Thus, the process energy efficiency indicator of EUR can be presented as
follows:

EUR=
E

60⋅P
⋅100% (6)

where P denoted the laser power in W. EUR mainly characterizes the
proportion of energy that creates the molten pool and heats deposited
layers. It cannot illuminate the amounts of energy for building the
deposited layers. Given the objective of achieving the desired parts, one
expected to build more deposited volume for unit energy input. In this
regard, it was desirable to increase the utilization of laser energy for
forming the deposited layer while minimizing excessive fusion bonding.
As a result, the SEC was introduced as an additional measure to assess
energy efficiency at process level. Sec (J/g) is determined as follows:

SEC=
E

ρ⋅Sd⋅vs
=

ρ⋅S⋅vs⋅t⋅

( ∫Tm

Ta

C(T)dT + ΔH

⎞

⎠+ El

ρ⋅Sd⋅vs
(7)

This equation can be further simplified as below:

SEC=
1

1 − ηre

⎛

⎝
∫Tm

Ta

C(T)dT+ΔH

⎞

⎠ (8)

As reflected in Eq. (7), greater Sd and smaller Sre implies better SEC
for certain energy input. The bonding strength, however, might be
deteriorated in such case. Thus, the process energy efficiency indicators
could conflict with quality indicators.

3. Experimental procedure

3.1. Experiment setup

Fig. 4 presented the experimental platform of the L-DED system,
comprised of a laser device, control cabinet, kinetic system, water-
cooling machine, and powder feeder. Table 1 provided the basic speci-
fications of this system. Given this study concerns the energy con-
sumption at process level rather than machine level, the power analyzer
is not required in the experiment although this device is commonly used

Fig. 4. Experimental platform of AM: (a) laser device; (b) control cabinet; (c) kinetic system; (d) water-cooling machine; and (e) powder feeder.

Table 1
Basic technical information of L-DED system.

Items Parameters Unit

Maximum output laser beam power 3000 W
Laser wavelength range 1075–1085 nm
Rated input voltage 3 × 380 - 3 × 575 V
Ambient temperature 5–45 ◦C
Repeated positioning accuracy ±0.05 mm
Filter wavelength 808 ± 20 mm
Maximum working radius of the robot 2033 mm
Flow rate of powder feeder 1–25 L/min
Operating frequency of the chiller 50 Hz

B. Gao et al.
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in the investigation of the energy efficiency of manufacturing equipment
[19–21]. Dong et al. analyzed the energy use of each device separately in
an L-DED system [22]. They found that the power rates of the control
cabinet, powder feed, and kinetic system were stable and significantly
less than and cooling system and laser system. The cooling system,

however, runs stochastically and infrequently during the whole
manufacturing process. It is noteworthy that the energy consumption on
the process level primarily focuses on the laser system [23]. On one
hand, the laser system is the most dominant contributor to the energy
consumption of L-DED system. On the other hand, the energy distribu-
tion of laser energy exerted on the powder, substrate, and molten pool
reflects the dynamic thermal history and quality of deposited layers.

The metallic material utilized in this study is Ti–10Mo powders with
diameters in the range of 66.3–254 μm. Table 2 illustrated the chemical
composition of Ti–10Mo, determined by an inductively coupled plasma
emission spectrometer (Agilent 720 ES). To enhance the flowability of

Table 2
Chemical composition of Ti–10Mo titanium alloy powder (wt %).

Materials Ti Mo C N O S Fe

Powder Bal 10.39 0.05 0.01 0.13 0.08 0.01

Table 3
Process parameters and experimental results.

No. P(W) Vs(mm/s) F(g/min) DR (%) θ(◦) AR Sd(mm2) Sre(mm2)

1 500 7 6 0.07 60.89 2.58 0.639 0.058
2 800 7 6 0.17 46.46 2.95 0.942 0.198
3 1100 7 6 0.29 35.24 4.06 1.163 0.449
4 1400 7 6 0.46 32.4 4.82 1.116 0.872
5 500 10 6 0.04 51.7 2.88 0.358 0.035
6 800 10 6 0.23 33.95 3.93 0.623 0.196
7 1100 10 6 0.36 26.7 4.65 0.628 0.339
9 1400 10 6 0.5 24.78 5.78 0.701 0.615
8 500 13 6 0.06 35.65 4.53 0.223 0.029
10 800 13 6 0.33 32.25 4.57 0.415 0.217
11 1100 13 6 0.41 26.28 5.26 0.561 0.471
12 1400 13 6 0.55 19.09 6.41 0.554 0.729
13 500 16 6 0.09 34.4 4.23 0.213 0.054
14 800 16 6 0.35 28.13 5.31 0.355 0.199
15 1100 16 6 0.43 23 5.73 0.42 0.376
16 1400 16 6 0.56 22.85 6.56 0.49 0.638
17 500 19 6 0.06 26.59 4.45 0.192 0.043
18 800 19 6 0.36 17 5.83 0.263 0.176
19 1100 19 6 0.46 16.03 5.92 0.358 0.351
20 1400 19 6 0.58 23.7 6.74 0.38 0.253
21 500 7 8 0.08 73.88 1.71 0.847 0.068
22 800 7 8 0.09 55.53 2.48 1.149 0.218
23 1100 7 8 0.23 52.83 2.82 1.504 0.469
24 1400 7 8 0.29 42.82 2.94 1.814 0.771
25 500 10 8 0.05 50.73 2.48 0.447 0.058
26 800 10 8 0.09 48.22 2.61 0.962 0.166
27 1100 10 8 0.26 39.28 3.18 1.121 0.412
28 1400 10 8 0.29 33.31 3.63 1.202 0.605
29 500 13 8 0.04 45.01 3.04 0.362 0.039
30 800 13 8 0.24 36.94 3.87 0.523 0.243
31 1100 13 8 0.36 27.94 4.78 0.715 0.387
32 1400 13 8 0.45 25.37 5.29 0.735 0.587
33 500 16 8 0.08 36.89 3.49 0.251 0.048
34 800 16 8 0.21 33.1 3.98 0.44 0.118
35 1100 16 8 0.34 24.39 4.54 0.594 0.35
36 1400 16 8 0.43 28.68 5.14 0.651 0.601
37 500 19 8 0.13 28.53 4.43 0.189 0.041
38 800 19 8 0.22 23.65 4.45 0.362 0.138
39 1100 19 8 0.42 21.55 5.46 0.448 0.362
40 1400 19 8 0.45 18.45 5.78 0.457 0.449
41 500 7 10 0.05 72.49 1.57 0.817 0.055
42 800 7 10 0.03 65.36 1.67 1.568 0.187
43 1100 7 10 0.09 58.08 2.25 1.872 0.382
44 1400 7 10 0.27 56.85 2.54 2.077 0.783
45 500 10 10 0.05 71.75 2.06 0.61 0.086
46 800 10 10 0.09 54.05 2.44 0.993 0.226
47 1100 10 10 0.2 45.85 2.94 1.294 0.352
48 1400 10 10 0.37 36.51 3.53 1.217 0.717
49 500 13 10 0.08 56.33 2.94 0.348 0.086
50 800 13 10 0.21 51.85 3.52 0.608 0.166
51 1100 13 10 0.26 41.64 3.7 0.866 0.296
52 1400 13 10 0.48 34.33 4.84 0.77 0.708
53 500 16 10 0.04 55.87 2.69 0.392 0.033
54 800 16 10 0.19 47.89 3.47 0.616 0.168
55 1100 16 10 0.25 39.36 3.42 0.77 0.233
56 1400 16 10 0.42 32.39 4.68 0.847 0.496
57 500 19 10 0.08 39.58 3.54 0.262 0.054
58 800 19 10 0.26 29.03 4.3 0.4 0.15
59 1100 19 10 0.3 33.39 4.41 0.499 0.205
60 1400 19 10 0.45 26.67 5.13 0.495 0.293
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the powder, the powder was dried at 105 ◦C for 2 h. Additionally, the
TC4 titanium substrate (100 × 100 × 3 mm) was polished using sand-
paper to eliminate surface impurities and oxide films. The laser beam
spot size used in the experiment was 2 mm, and the printing length was
40 mm. The deposition laser head was positioned 13 mm above the
substrate. To ensure a good metallurgical effect between the clad track
and the substrate, preheating of the substrate was conducted with a laser
power of 600W before each experimental group. The samples of
deposited layers all belong to single-layer and single-track formations.

3.2. Geometrical performance metrics

This study selected three quality performance metrics for the
deposited layers: wetting angle (θ), dilution rate (DR), and aspect ratio
(AR). The last two can be calculated using the following equation:

DR=
d

d+ h
(9)

AR=
w
h

(10)

where w is the width of deposited layer in mm, h is the height of
deposited layer in mm, and d is the depth of molten area in mm, as
shown in Fig. 3. Wetting typically refers to the behavior of a liquid
infiltrating the interior of a solid or adhering to the surface of a solid.
When the contact angles are large, this would result in a non-wetting
circumstance and a tendency to adopt a circular shape to lower the
surface area [24]. Thus, lower contact angles usually indicate better
wetting. To provide outstanding wear resistance and corrosion resis-
tance of the cladding layer, a reasonable minimum dilution rate is
needed in practical applications. The ideal dilution rate differs for
various materials. An extremely high dilution rate might reduce the
cladding layer’s quality and raise the risk of deformation and cracking
[25]. On the other side, an over-low dilution rate might cause the
cladding layer to delaminate [26]. AR of the deposited layer refers to the
ratio between the width and height of its cross-section. An excessively
high AR tend to cause porosity during the deposition process, lowering
the effectiveness of overlaying. Conversely, an over-lower AR might
induce inadequate wetting and a higher chance of flaws during the
fabrication process, as well as poor metallurgical bonding between the
deposition zone and the substrate [27].

Three processing parameters, i.e., the powder feed rate (F), scanning
speed (Vs), and laser power (P) were varied at different levels. These
three parameters have been proven to be significantly influential pa-
rameters to energy consumption [28,29]. We conducted a full factorial
experiment with 60 sets of parameter combinations. The fabricated
deposition layers were sliced by wire electrical discharge machining to
obtain the corresponding 60 samples. Subsequently, we employed the
metallographic mosaic method to further prepare the samples. Molyb-
denum sandpapers and diamond paste were utilized for the sanding and
polishing processes. Additionally, an etchant was applied to reveal the
fusion zones of the samples. With the geometry profile of cross sections
observed by microscope (ICX41 M), we measured the deposited areas
and remelted areas via manually drawn closed curves in the imageview
software. The system inputs (processing parameters) and outputs data
(geometrical performance metrics) for later performance prediction and
optimization as shown in Table 3.

4. Algorithm description

4.1. Framework of prediction using XGBoost with improved
metaheuristics

The prediction objective of this study was based on the XGBoost. The
XGBoost approach benefits from automatic parallel processing and
adaptive tree topologies, which make it possible for it to efficiently
handle large datasets in real-time [30]. The schematic diagram of
XGBoost’s decision tree construction process was presented in Fig. 5.

The construction of each decision tree aims to address the chal-
lenging samples that were predicted with relatively lower accuracy by
the previous trees. As a result, every tree in XGBoost is thought of as a
weak base learner. The ultimate prediction of the model can be
explained by:

ŷm = ŷm− 1 + αfm(X, θm)=α
∑m

j=1
fj
(
X, θj

)
(11)

where α is the shrinkage factor in decision trees, which is used to control
the learning rate of the fitting process; m is the number of decision trees;
X is the predictor; θj is a parameter that controls the structure of the j-th
tree; fj

(
X, θj

)
is the output of the j-th decision tree based on the θj

Fig. 5. Schematic diagram of original XGBoost.

B. Gao et al.



Energy 306 (2024) 132518

7

structure without shrinkage and ŷj represents the prediction of the j-th
decision trees. The predictor variables X and the residuals y − ŷj− 1 from
the previous trees are used as inputs for constructing a new decision tree.
As a result, as the quantity of decision trees increases, the residuals
usually decrease. In the forward phase of the process, the objective
function that needs to be optimized is:
∑

i
L(ŷi, yi)+

∑

j
Ω
(
θj
)
=
∑

i
L
[
yi, ŷ

j− 1
i + αfj

(
Xi, θj

)]
+
∑

j
Ω
(
θj
)

(12)

where L is the loss function, which is calculated as the squared error
between the predicted value ŷ and the true value y. A greater number of
leaves in a model typically reduces the error, but it can also lead to
overfitting issues. To penalize the complexity of the model and prevent
overfitting, a regularization term is introduced with:

∑

j
Ω
(
θj
)
= ε ⋅ Jj +

1
2

λ⋅
∑J

j=1
ωjk

2 (13)

where Jj is the total number of leaf nodes in the j-th tree while ε and λ are
regularization parameters; ωjk is the weight of the k-th leaf within the j-
th tree. To facilitate the utilization of custom loss functions, XGBoost
adopts a substitution of the loss function with a second-order Taylor
expansion.

For optimal splitting at each node, the branch with the largest gain is
chosen. During the process of tree pruning, a gain function is computed
with:

Gain=
1
2

[
G2
L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)
2

HL + HR + λ

]

− γ (14)

where γ represents the structural complexity introduced by the splits;GL,
GR,HL和HR represent the combined sum of gi and hi for the left and right
branches following the split.

Extensive research has shown that hyperparameters play a crucial
role in determining the final performance of XGBoost models [31].
Heuristic algorithms are typically problem-specific and rely on domain

Fig. 6. Flow chart of improved MA with Bayesian technique and mutation strategy.
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knowledge to guide the search process, whereas metaheuristics are
higher-level frameworks that can be adapted to various optimization
problems [32]. Therefore, we incorporated the Bayesian theory and
mutation strategy into the meta-heuristic inspired by Mayfly. Such
techniques enabled the identification of better hyperparameters in the
original XGBoost, e.g., the learning rate, subsample, maximum depth
(max_depth), and number of decision trees (n_estimators). Then its
predictive accuracy was expected to be enhanced to some extent.

4.2. Mayfly algorithm revisit

The Mayfly algorithm (MA) draws inspiration from the flight
behavior and mating process observed in mayflies and is originally
proposed by Ref. [33]. It can be regarded as a derivative of the particle
swarm optimization (PSO) algorithm [34], firefly algorithm [35],
invasive weed optimization [36], etc. The algorithm initializes two
populations of mayflies, namely the male population and the female
population, through a random generation process. Each mayfly’s posi-
tion within the search space represents a potential solution to the
problem. The male and female populations of mayflies exhibit distinct
movement strategies. Males’ movement can be formulated as below:

xt+1i = xti + vt+1i (15)

vt+1i,d = vti,d + c1e− βr2p
(
pbesti,d − xti,d

)
+ c2e− βr2g

(
gbestd − xti,d

)
(16)

where xti,d is position of individual i on dimension d at step t, vti,d is ve-
locity of individual i on dimension d at step t, and the flying direction of
each mayfly is determined by a dynamic interplay of its individual flying
experiences and the social interactions within the group. c1 and c2 are
two constants associated respectively with the social and cognitive
components, β is a fixed factor to limit the connectivity among in-
dividuals within the swarm. pbesti,d is the personal best position ach-
ieved so far, gbestd is the best position obtained by any mayfly in the N
swarm. Furthermore, rp and rg is the Cartesian distance between xi and
its pbest and gbest respectively. The two factors are formulated as:

‖xi − Xi‖=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
xij − Xij

)2

√
√
√
√ (17)

where Xi is associated with pbest or gbest.
Females are attracted by superior males. Females’ movement stra-

tegies can be formulated as:

yt+1i = yti + vt+1i (18)

vt+1i,d =

⎧
⎨

⎩

vti,d + c2e− βr2mf
(
xti,d − yti,d

)
, if f(yi) > f(xi)

vti,d + fl ∗ r, if f(yi) ≤ f(xi)
(19)

where yti,d is the position of female individual i on dimension d at step t,
rmf is the Cartesian distance between male and female individuals, fl is a
random movement factor used when a female is not attracted by a male,
and r is a random number with a range of [-1, 1].

The crossover operator models the mating process between two
mayflies in the following manner: A single parent is chosen from the
male population and another from the female population. The selection
of parents mirrors the process in which females are attracted to males.
Specifically, the selection can be either random or based on their fitness
function. In the latter case, the highest-performing female mates with
the highest-performing male, the second highest-performing female
with the second highest-performing male, and so forth. The crossover
operation produces two offspring, which are generated according to the
followings:

{
offspring1 = L ∗ male+ (1 − L) ∗ female
offspring2 = L ∗ female+ (1 − L) ∗male (20)

Where L is a random value within a specific range. The initial velocities
of the offspring are initialized to zero.

In each iteration, a total of 2N offspring are generated through the
crossover operation. From this pool of offspring, the top N individuals
with the highest fitness are selected to replace the current population.
These selected individuals are then randomly divided into male and
female groups, forming the new population for the next iteration. This
strategy ensures that the population is continually refreshed with the
most promising offspring, promoting the exploration and exploitation of
the search space in subsequent iterations.

4.3. MA with Bayesian techniques

While the velocity limit can restrict the mayflies from attaining
excessive speeds, there are instances where it becomes necessary to
decrease the velocities. This adjustment was made to effectively manage
the trade-off between exploration and exploitation capabilities of the
mayflies. To ensure that the MA algorithm possesses a convergence like
PSO, we introduced a new inertia weight denoted as gti to precede vti,d in
Eq. (16). This paper proposed a Bayesian MAmethod that incorporates a
probability density function, and the procedure of algorithm was pre-
sented in Fig. 6.

The optimal inertia weight was determined by maximizing the pos-
terior probability density function associated with the weight. Further-
more, considering the independence of data in each dimension of MA,
the analysis in the subsequent discussion was focused on a single
dimension. In summary, we simplified Eqs. (16) and (19), and made the
following modifications:

Vt+1
i = gtiV

t
i + c1Rp

(
pbesti − Xt

i
)
+ c2Rg

(
gbesti − Xt

i
)

(21)

We also incorporated a constant denoted as gc into Eq. (19), drawing
inspiration from Eq. (16):

gt+1i =

{
gcVt

i + c2Rmf
(
Xt
i − Yt

i
)
, if f(Y) > f(Xi)

gcVt
i + fl ∗ r, if f(Yi) ≤ f(Xi)

(22)

Bayesian was introduced to estimate the inertia weight gti . Generally,
it is challenging to obtain prior information about gti , so we adopted a
Uniform distribution to represent this prior. Gaussian noise model was
introduced to express the likelihood function:

L
(
pi
⃒
⃒gti
)
= e− ‖pi − g

t
i ⋅g

t
i best− (1− g

t
i)⋅pbesti‖

2

(23)

Then we calculated the posterior probability of weight P(gti
⃒
⃒pi
)
and

updated the individual weight gt+1i :

P
(
gti
⃒
⃒pi
)
=P
(
pi
⃒
⃒gti
)
× P
(
gti
)

(24)

gt+1i = argmaxP
(
gti
⃒
⃒pi
)

(25)

4.4. Mutation strategy

Premature convergence of MA can cause the algorithm to converge
to a local minimum rather than a global minimum. To overcome this
issue, we developed a modified version of the original algorithm
incorporating a random mutation into a subset of the population. This
mutation mechanism enables the algorithm to explore unexplored re-
gions of the search space. Specifically, a normally distributed random
number is added to the variable of the selected offspring for mutation.
This random perturbation introduces variability and promotes explo-
ration beyond the local optima. Consequently, the offspring underwent
modifications as follows:

B. Gao et al.
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{
offspring1 = L ∗ male+ (1 − L) ∗ female+ ε1
offspring2 = L ∗ female+ (1 − L) ∗male+ ε2

(26)

where ε follows a normal distribution with mean = 0 and variance = 1.

4.5. Algorithms comparison and evaluation metrics

Among the various machine learning techniques, one needs to
choose an appropriate algorithm to serve as the basic model. Popular
machine learning models and statistical learning such as Support Vector
Regression (SVR), Light Gradient Boosting Machine (LightGBM), Cate-
gorical Boosting (CatBoost), Partial Least Squares (PLS), Gradient
Boosting Regression Tree (GBRT), and original XGBoost were trained
and tested by the established dataset. The prediction performance of 12
testing samples was shown in Fig. 7. As shown in Table 4, in summari-
zing the cumulative sum of the absolute differences between predicted

values and observed values across 12 groups for all features, XGBoost
mostly excelled, with only a minor shortfall to CatBoost in aspect ratio
predictions, yet this gap was slight. We selected the XGBoost as the
model basis, considering its prediction values (red triangle) were close
to the observed values (black circle) in most cases.

To further validate the prediction performance of the proposed
approach, we integrated PSO, MA, Bayesian technique, or Bayesian-MA
into the XGBoost separately, also called N-XGBoost in this study, as a
comparative basis. Hereby, the ‘N’ in ‘N-XGBoost’ refers to PSO, MA,
Bayesian, Bayesian-MA, and improved MA (the MA with Bayesian and
mutation strategy). Data in Table 3 were randomly divided into two
sections for training and testing purposes. 80 % of the total samples were
used to train the N-XGBoost model using a ten-fold cross-validation
approach, and the remaining 20 % were used to verify the accuracy of
models.

All these algorithms were evaluated based on statistical criteria
including R-squared (R2), Mean Absolute Error (MAE), Mean Square
Error (MSE), and Mean Absolute Percentage Error (MAPE). R2 measures
the proportion of the variance in the dependent variable that can be
explained by the independent variables in a regression model. It in-
dicates how well the regression model fits the observed data. MAE
measures the average absolute difference between the predicted and
actual values. MSE is the average squared difference between the pre-
dicted and actual values. MAPE measures the average percentage dif-
ference between the predicted and actual values and provides a relative
measure of the model’s accuracy. Higher R2 implies better-explained
variance of the model. Whereas lower MAE, MSE, and MAPE mean
better predictive accuracy. MAE is usually less sensitive to outliers
compared to other metrics like MSE. These criteria can be calculated by:

R2 =1 −

∑(
yi,obs − yi,pred

)2

∑(
yi,obs − ŷ

)2 (27)

MAE=
1
n
∑n

i=1

⃒
⃒
⃒yi,obs − yi,pred

⃒
⃒
⃒ (28)

MSE=
1
n
∑n

i=1

(
yi,obs − yi,pred

)2
(29)

MAPE=
100%
n

∑n

i=1

⃒
⃒
⃒
⃒
⃒

yi,obs − yi,pred
yi,obs

⃒
⃒
⃒
⃒
⃒

(30)

where n is the number of observations, ŷ is the mean observed value,
yi,obs and yi,pred are the i-th observed and predicted values, respectively.

4.6. Multi-objective optimization construction

Both the relationship between SEC and EUR as well as the connection
between energy efficiency and the geometry of deposited layers are
intricate. Although in "black box" form, the above-mentioned meta-
heuristics method in combination with machine learning could disclose
the relationship between processing parameters, energy efficiency, and
geometrical appearance. The optimization objectives in this study were
to minimize the two energy efficiency indicators subject to the con-
straints of geometrical performances. Although both SEC and EUR
represent the energy efficiency of AM, high EUR does not necessarily
means lower SEC under certain processing parameters, and vice versa.
Over high or low wetting angle, dilution rate, and aspect ratio are not
allowed because they would deteriorate the mechanical characteristics.
Additionally, the processing parameters were also confined to certain
ranges. Therefore, the multi-objective optimization problem can be
expressed as below:

Fig. 7. Prediction comparison of popular machine learning algorithms.

Table 4
The cumulative sum of the absolute differences between predicted values and
observed values across 12 groups for all features.

GBRT PLS CatBoost SVR LightGBM XGBoost

Dilution Rate
(%)

0.39 0.52 0.38 0.96 0.87 0.36

Wetting Angle
(◦)

69.35 67.15 56.17 106.56 86.62 51.44

Aspect Ratio 3.30 4.36 3.21 10.30 9.09 3.61
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Fig. 8. Variation of hyperparameters during iterations.
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obj. max ERU, − SEC

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

30 ≤ θ ≤ 90 (◦)

10% ≤ DR ≤ 30%

2 ≤ AR ≤ 4

500 ≤ P ≤ 1400 (W)

6 ≤ Vs ≤ 20 (mm/s)

6 ≤ F ≤ 10 (g/min)

We employed the NSGA-II to solve this optimization problem. NSGA-
II was recognized as one of the most effective algorithms for multi-
objective optimization, considering its efficient approximation of the
Pareto border between various objectives [37]. The primary processes of
this algorithm are fitness assessment, non-dominated sorting, crowding
distance computation, selection, crossover, and mutation. Details on
NSGA-II can be found in Ref. [38]. The θ, DR, and AR predicted from the
improved MA with the Bayesian technique and mutation strategy were
used to determine the fitness values for each generation of NSGA-II.

5. Computational results

5.1. Geometrical performance prediction with N-XGBoost

To validate the superiority of improved MA-XGBoost, we attempted
to compare the performance of N-XGBoost in the prediction of DR, θ, and
AR. Due to space limitations, we would only focus on geometrical
metrics in this section, excluding energy efficiency metrics hereby. All
these algorithms run on an identical computational platform. The ‘N’
part in N-XGBoost aims at finding the optimal hyperparameters to
improve the prediction accuracy of the original XGBoost. In the example
of improved MA-XGBoost, Fig. 8 showed intermittent variations of four
hyperparameters across 50 training iterations. The final hyper-
parameters tend to converge and can be regarded as optimal ones. After
the training process, the final hyperparameters shown in Table 5 were
adopted for the prediction of geometrical indicators.

The convergent curves of N-XGBoost were presented in Fig. 9. It was
evident that the proposed improved MA-XGBoost outperformed others
in terms of convergence rate and fitness value. The fitness value is a
measurement derived from the fitness function in meta-heuristic algo-
rithms, which is comparable to the loss function in machine learning
methods. This demonstrated the superiority of MA-XGBoost in fitting
accuracy and efficiency. The MA-Bayesian XGBoost showed competitive
performance, as the Bayesian technique constantly updated the prior
information, and a limited number of iterations for parameter tuning
facilitated the search speed. Compared with improved MA-XGBoost, the
absence of mutation strategy in MA-Bayesian XGBoost limited its
exploration capability in feasible space. Exclusively incorporating the
PSO into XGBoost also presented good fitting accuracy and convergence
rate. Comparison with Bayesian-XGBoost indicated that the meta-
heuristic algorithm was an ideal option to modify the hyper-
parameters in the machine learning model.

We adopted 12 samples of processing parameters and corresponding
geometrical indicators to test the prediction accuracy of N-XGBoost. As
clear from Figs. 10–12, improved MA-XGBoost has the largest R2 and
least MSE, indicating the proposed model demonstrated a strong ability
to explain the variation in the dependent variable and achieves accurate
predictions with minimal errors. In the case of θ prediction (Fig. 12), the
MAE and MAPE of improved MA-XGBoost were slightly greater than
that of MA-Bayesian XGBoost. This implied that improved MA-XGBoost
has a stronger ability to capture overall trends but may have a slightly
less accurate predicting capability in specific cases. Whereas the pro-
posed model still possessed the best performance in terms of MAE and
MAPE for predicting AR (Fig. 10) and DR (Fig. 11).

In XGBoost, feature importance quantifies the relative importance of
each feature in predicting the target variable. It is based on their

Table 5
Final hyperparameters in the improved MA-XGBoost.

Geometry Learning_rate Subsample Max_depth N_estimators

Dilution Ratio(%) 0.1055 0.3201 70 70
Wetting Angle(◦) 0.5319 0.5620 81 80
Aspect Rate 0.1489 0.1400 65 81

Fig. 9. Convergent curves of N-XGBoost for predicting: (a) DR, (b) θ, and
(c) AR.
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frequency and importance in decision trees during boosting. Higher
values indicate greater importance, with scores normalized, to sum up to
1. The relevance of a feature is expressed by its weight, which measures
how frequently it is used across all trees. A larger weight indicates that
the feature is utilized in more trees and contributes more significantly to
the outcome of the prediction, reflecting the importance of the feature. It
helps rank and identify influential features for predictions.

Shapley Additive exPlanations (SHAP) method, a technique used to
explain the output of ML models, was utilized in this study [39]. Fig. 13
showed the relevant importance of the processing parameters on the
geometric appearance and energy efficiency determined by the predic-
tion model in this study. It indicated that the laser power had the
greatest impact on the dilution rate, with the effects of powder feed rate
and scanning speed having relatively lesser but comparable effects.
Similar reactions to the processing parameters may be observed for the
wetting angle and aspect ratio, with scanning speed having the biggest
influence, followed by powder feed rate, and laser power having the
smallest influence, which was consistent with the actual situation.
Higher laser power directly influences the melting and solidification of

the deposition track, affecting both its size and exerting an influence on
the dilution rate observed in the track. Lower scanning rates result in
longer molten pool dwell durations, whilst higher speeds result in
shorter stay times. This difference in scanning speed reflected the length
of the molten pool. This affects the accumulation of metal powder
during the deposition process, which in turn affects the wetting angle
and aspect ratio. The process parameters produce different effects on
EUR and SEC in terms of energy efficiency. The two factors that had the
highest effects on EUR were the powder feed rate and scanning speed,
whereas laser power had the least impact. The impact of the process
parameters on SEC showed an opposite pattern on EUR.

5.2. Multi-objective optimization with NSGA-II

Table 6 listed the main parameters of NSGA-II. The EUR and SEC are
not positively correlated, and a trade-off is required for energy conser-
vation in L-DED process. To maximize both EUR and -SEC, a bi-objective
optimization using the NSGA-II algorithm was conducted. Instead of
seeking a single optimal solution, the goal was to identify a set of

Fig. 10. Comparison of N-XGBoost for predicting AR (training phase).
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optimal solutions known as the Pareto front. The Pareto front is referred
to as the ideal situation where no objective can be further enhanced
without unfavorable impact on other objectives. Each sample point at
the Pareto front signifies a non-dominated solution [40]. The Pareto
front for the processing parameters in the design space is shown in
Fig. 14 by the blue sample points. For example, under the EUR of 18.43
%, the lowest SEC would be 3625.49 J/g. This nondominated solution
implies that the laser power of 781 W, scanning speed of 12 mm/s, and
powder feed rate of 10 g. In general, the Pareto front offers an ideal
solution space for processing parameters, enabling flexible acquisition of
parameters in actual AM practice with minimal energy consumption and
good geometrical appearance.

In order to obtain deposited layer with rational geometrical

appearance, 15 satisfied layers were selected from a total of 60 sets of
melted SEC and EUR values obtained under the constraints defined by
Equation (27) and utilizing the process parameters provided in Table 3.
The red dot in Fig. 14 represents the average energy efficiency values of
these chosen layers, which were determined to be (16.88 %, 3713.50J/
g), and correspondingly select the SEC solution corresponding to EUR of
16.88 % from the Pareto front (green dot in Fig. 14), and the EUR so-
lution corresponding to SEC of 3717.50J/g (yellow dot in Fig. 14). The
verification experiments were performed with these two sets of corre-
sponding processing parameters. The cross-sectional results of the
deposited layer for the verifying experiments are shown in Fig. 15.
Table 7 displays the corresponding optimal values and experimental
outcomes. The maximal relative error of EUR is − 2.24 %, while that of

Fig. 11. Comparison of N-XGBoost for predicting DR (training phase).
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SEC is 2.06 %. These relative inaccuracies could be brought on by
permissible factors like process variations and device accuracy re-
strictions. Compared with the average values of EUR and SEC of the
satisfied deposited layer, the SEC experimental value of the optimal
solution in Table 7 decreased by 2.1% (from 3713.50J/g to 3637.15J/g)
concerning that EUR was determined to be 16.54 %. While the experi-
mental EUR value increased by 28.66 % (from 16.88 % to 23.66 %)
concerning that SEC was determined to be 3791.56J/g, resulting in a
greater improvement in energy efficiency. The selection of parameters
from the Pareto front is a critical step that requires careful consideration
of the relative importance of various indicators. For instance, if SEC is
prioritized during the selection process, characteristics that result in
lower SEC would be considered first. Additionally, a thorough analysis
of trade-offs between various goals is feasible based on the Pareto front.
One could assess the effects of parameter changes on energy usage,

geometrical appearance, and other pertinent factors. We chose optimal
parameters from the Pareto front and ultimately achieve better results in
terms of energy efficiency and geometrical appearance in AM practices
while considering the preferential energy efficiency indicator in specific
applications.

6. Implications and discussions

Increasing amounts of companies across almost every industry
commit to carbon neutrality in decade(s) ahead. The current smart
manufacturing can be no exception and still faces a rising need to reduce
energy intensity and mitigate environmental impacts [41,42]. AM is a
critical enabler for smart manufacturing from the perspective of
manufacturing transformation (design freedom, decentralized and
rapid-prototyping paradigm) [1] and intelligent sensor fabrication

Fig. 12. Comparison of N-XGBoost for predicting θ (training phase).
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(flexible, low-cost, and reliable electronics) [43]. As the AM has gained
the reputation of zero-waste in the manufacturing process, it seems
environmentally friendly at first glance compared with traditional
manufacturing techniques. This perception however probably
misleading when the transparent lifecycle conditions, e.g., the geometry
and materials of components are out of consideration. Compared with
conventional subtractive manufacturing such as milling and turning, the
estimated SEC values of AM process are approximately 1–2 orders of

magnitude higher [44]. The energy efficiency issue remains a barrier to
the widespread and massive adoption of metal AM.

The manufacturing process is the dominant contributor to the life-
cycle environmental burdens of AM. While the processing parameters
remarkably affect the quality and energy consumption of metal AM
given specific printing conditions like equipment, feedstock materials,
and part orientation [45,46]. Additionally, the manufacturing process of
typical AM itself is fairly slow, resulting in higher energy intensity. The
processing parameters influence the production rate significantly and
further determine the total energy consumption during the parts fabri-
cation process. Energy consumption and mechanical properties of
fabricated parts are closely related production criteria for AM. Although
the effects of laser energy input exerted onmicrostructure formation and
mechanical properties have been quantitatively analyzed in previous
studies [3,47], the underlying mechanisms regarding energy density,
heat flux, and crystal structure are complicated, prohibiting accurately
prediction of energy use and mechanical properties solely from the
mechanism perspective. However, machine learning techniques are
promising alternatives to understanding and predicting the mechanical
performance and energy consumption of AMwithout prior knowledge of
interactive mechanisms between energy input and mechanical proper-
ties. These prediction and optimization approaches are feasible for en-
ergy conservation in AM practices.

The SEC of L-DED at the process level ranged from ~3400 to 4000 J/
g, in line with the statistical analysis of SEC during AM processes by
Ref. [5]. The range scope implied the potential for improvement via the
optimization of processing parameters. It is worth noting that a
considerably lower SEC does not necessarily suggest better performance.

Fig. 13. Importance ranking of features.

Table 6
Main parameters of NSGA-II.

Parameters max_gen pop_size crossover_prob mutation_prob tournament_size

Values 2000 48 0.5 0.1 6

Fig. 14. Pareto front for energy efficiency in L-DED.
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For example, high energy input in conjunction with higher scanning
speed intuitively causes a greater mass of deposited layer and lower SEC
but unqualified dilution rate. EUR was adopted in this study as a sup-
plementary indicator of energy efficiency, characterizing the proportion
of useful energy devoted to the metal deposition process. The combi-
nation of these two indicators can evaluate the energy efficiency of AM
more comprehensively, preventing the excessive fusion bonding be-
tween two adjacent deposited layers [3].

The lifecycle energy footprint can be improved at multiple life cycle
phases while optimizing the processing parameters at the manufacturing
stage is a relevant and cost-effective method to enhance the environ-
mental sustainability of AM. In the present study, the SEC and EUR were
improved by 76.35 J/g and 6.78 %, respectively. This is essentially a
significant improvement from merely an energy perspective. But the
quality of AM parts should be considered with more priority. Notably,
energy conservation of AM is performed with the prerequisite of quality
assurance. From 2021 to 2028, a forecasted 21 % annual growth rate for
the global AM market is expected [48]. The rising market indicated a
substantial potential for energy saving through the optimization of AM
process. Further, such prediction and optimization approaches can be
easily extended to other AM forms such as selective laser sintering,
electron beam melting, and fused deposition modeling.

7. Conclusions

The energy intensity of AM has been substantially greater than the
traditional subtractive manufacturing, and the slow process rate of AM
arguably further exacerbates this phenomenon. Fully exploiting the
energy conservation potentials without compromising the quality per-
formance has been greatly desired in AM practices. To collect the energy
efficiency and geometrical appearance of deposited layers including
wetting angle, dilution rate, and aspect ratio, the present study con-
ducted a full factorial L-DED experiment under various combinations of
processing parameters. We proposed an improved MA with Bayesian
technique and mutation strategy and integrated it into XGBoost for
determining better hyperparameters. NSGA-II was then applied to
optimize the two energy efficiency indicators under the constraint of

feasible geometrical appearance.
The comparison amongst the prediction models indicated that

improved MA-XGBoost overperformed others in terms of convergence
rate and fitness values in the training process. Whereas in the predic-
tion/testing process, improved MA-XGBoost had the largest R2 and least
MSE, which proved its best accuracy compared with other N-XGBoost
algorithms in predicting the geometrical appearance. According to a
ranking of feature importance, the EURwas most affected by the powder
feeding rate. The wetting angle and aspect ratio were mainly impacted
by scanning speed. The dilution rate and SEC were primarily impacted
by laser power. We also utilized the NSGA-II to trade off EUR and SEC
indicators. The Pareto front of the L-DED process, a set of nondominated
solutions, was found for ensuring the geometrical appearance of the
deposited layers. The verifying experiments demonstrated that the error
of Pareto curve was within 2.2 %.

This study could help provide optimal parametric combinations of L-
DED from the perspective of energy consumption, supporting the se-
lection of appropriate processing parameters without compromising the
quality of parts. Additionally, as the present study primarily focused on
the L-DED, the energy conservation strategy can be applied to other AM
processes such as electron beam melting and selective laser melting.
Wide application of energy-saving techniques in AM process also implies
significant decreases in financial expenses and environmental impact.

As the prediction performance of machine learning algorithms is
closely related to the size of the dataset, increasing the number of ex-
periments is expected to level up the prediction accuracy. Considering
that L-DED experiments are prohibitive for substantial amounts of trials,
how to improve the performance of algorithms under a limited dataset
should be explored in future work. Considering that this study is only
limited to single-layer single-track experiments, follow-up studies can
consider the multi-layer or multi-track situations as the thermal history,
quality condition, and energy efficiency could be significantly complex
in that cases. Since the AM processes are influenced by more than one
hundred factors, additional features, e.g., the hatch spacing and laser
spot size included in the training models would be desirable in the future
studies.
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Fig. 15. The cross-sectional topography of two optimal solutions.

Table 7
Processing parameters and results of verifying experiments.

No. P (W) Vs (mm/s) F (g/min) Value EUR (%) SEC (J/g)

1 1185 8 9 optimal 16.88 3583.35
experiment 16.54 3637.15
err. − 2.06 % 1.48 %

2 958 11 8 optimal 24.19 3713.50
experiment 23.66 3791.56
err. − 2.24 % 2.06 %
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